カレントテラピー 31-9 サンプル page 18/30
このページは カレントテラピー 31-9 サンプル の電子ブックに掲載されている18ページの概要です。
秒後に電子ブックの対象ページへ移動します。
「電子ブックを開く」をクリックすると今すぐ対象ページへ移動します。
概要:
カレントテラピー 31-9 サンプル
40 Current Therapy 2013 Vol.31 No.9926Ⅵ おわりに2型糖尿病は,GWASについては,生活習慣病のなかで癌と並び最も成功した疾患のひとつであるが,一方で糖尿病を通じてGWASの長所も限界も明らかになりつつある.今後,KCNQ1 を中心としたわが国独自の検証も含めて,得られた遺伝因子の臨床的意義の確立も必要である.こうした研究が発展すれば,個別化医療・予防への応用についても,糖尿病が生活習慣病のモデルケースとなると期待される.参考文献1) Lyssenko V, Lupi R, Marchetti P, et al:Mechanisms bywhich common variants in the TCF7L2 gene increase risk oftype 2 diabetes. J Clin Invest 117:2155-2163, 20072) Gaulton K, Nammo T, Pasquali L, et al:A map of open chromatinin human pancreatic islets. Nat Genet 42:255-259,20103) Yasuda K, Miyake K, Horikawa Y, et al:Variants in KCNQ1are associated with susceptibility to type 2 diabetes mellitus.Nat Genet 40:1092-1097, 20084) Unoki H, Takahashi A, Kawaguchi T, et al:SNPs in KCNQ1are associated with susceptibility to type 2 diabetes in EastAsian and European populations. Nat Genet 40:1098-1102,20085) Sun Q, Song K, Shen X, et al:The association betweenKCNQ1 gene polymorphism and type 2 diabetes risk:ameta-analysis. PLoS One 7:e48578, 20126) Kong A, Steinthorsdottir V, Masson G, et al:Parental originof sequence variants associated with complex diseases.Nature 462:868-874, 20097) Wei FY, Suzuki T, Watanabe S, et al:Deficit of tRNA(Lys)modification by Cdkal1 causes the development of type 2 diabetesin mice. J Clin Invest 12:3598-3608, 20118) Miyake K, Horikawa Y, Hara K, et al:Association of TCF7L2polymorphisms with susceptibility to type 2 diabetes in 4,087Japanese subjects. J Hum Genet 53:174-180, 20089) Miyake K, Yang W, Hara K, et al:Construction of a predictionmodel for type 2 diabetes mellitus in the Japanese populationbased on 11 genes with strong evidence of the association.J Hum Genet 54:236-241, 200910) Manolio TA, Collins FS, Cox NJ, et al:Finding the missingheritability of complex diseases. Nature 461:747-753, 200911) Yamauchi T, Hara K, Maeda S, et al:A genome-wide associationstudy in the Japanese population identifies susceptibilityloci for type 2 diabetes at UBE2E2 and C2CD4A -C2CD4B. Nat Genet 42:864-868, 201012) Voight BF, Scott LJ, Steinthorsdottir V, et al:Twelve type 2diabetes susceptibility loci identified through large -scaleassociation analysis. Nat Genet 42:579-589, 201013) Cho YS, Chen CH, Hu C, et al:Meta-analysis of genomewideassociation studies identifies eight new loci for type 2diabetes in east Asians. Nat Genet 44:67-72, 201114) Imamura M, Maeda S, Yamauchi T, et al:A single-nucleotidepolymorphism in ANK1 is associated with susceptibilityto type 2 diabetes in Japanese populations. Hum Mol Genet21:3042-3049, 201215) Manning AK, Hivert MF, Scott RA, et al:A genome-wideapproach accounting for body mass index identifies geneticvariants influencing fasting glycemic traits and insulin resistance.Nat Genet 44:659-669, 201216) Perry JR, Voight BF, Yengo L, et al:Stratifying type 2 diabetescases by BMI identifies genetic risk variants inLAMA1 and enrichment for risk variants in learn comparedto obese case. PLos Genet 8:e1002741, 201217) Zhou K, Bellenguez C, Spencer CC, et al:Common variantsnear ATM are associated with glycemic response to metforminin type 2 diabetes. Nat Genet 43:117-120, 201118) Huyghe JR, Jackson AU, Fogarty MP, et al:Exome arrayanalysis identifies new loci and low-frequency variants influencinginsulin processing and secretion. Nat Genet 45:197-201, 201319) Albrechtsen A, Grarup N, Li Y, et al:Exome sequencingdrivendiscovery of coding polymorphisms associated withcommon metabolic phenotypes. Diabetologia 56:298-310,201320) Schaub MA, Boyle AP, Kundaje A, et al:Linking diseaseassociations with regulatory information in the humangenome. Genome Res 22:1748-1759, 201221) Scott RA, Lagou V, Welch PP, et al;DIAbetes Genetics Replicationand Meta -analysis(DIAGRAM)Consortium:Large-scale association analyses identify new loci influencingglycemic traits and provide insight into the underlying biologicalpathways. Nat Genet 44:991-1005, 201222) Taneera J, Lang S, Sharma A, et al:A systems geneticsapproach identifies genes and pathways for type 2 diabetesin human islets. Cell Metab 16:122-134, 201223) Moran I, Akerman I, van de Bunt M, et al:Human β celltranscriptome analysis uncovers lnc RNAs that are tissuespecific,dynamically regulated, and abnormally expressed intype 2 diabetes. Cell Metab 13:435-448, 201224) Neel JV:The“thrifty genotype”in 1998. Nutr Rev 57:S2-S9, 199925) Nemoto M, Sasaki T, Debb SS, et al:Differential effect ofPPARgamma2 variants in the development of type 2 diabetesbetween native Japanese and Japanese Americans. DiabetesRes Clin Pract 57:131-137, 200226) Chen R, Corona E, Sikora M, et al:Type 2 diabetes riskalleles demonstrate extreme directional differentiation amonghuman populations, compared to other diseases. PLoS Genet8:e1002621, 201227) Hivert MF, Jablonski KA, Perreault L, et al:Updated geneticscore based on 34 confirmed type 2 diabetes loci is associatedwith diabetes incidence and regression to normoglycemiain the diabetes prevention program. Diabetes 60:1340-1348, 201128) Gluckman PD, Hanson MA, Beedle AS:Early life events andtheir consequences for later disease:a life history and evolutionaryperspective. Am J Hum Biol 19:1-19, 2007